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Abstract—This paper summarizes our research findings on
optimizing the symbolic execution of evolving state machines
using incremental analysis.

I. PROBLEM AND MOTIVATION

Model Driven Engineering (MDE) is a model-centric soft-
ware engineering approach that aims at improving the pro-
ductivity and the quality of software artifacts by focusing
on models as first-class artifacts in place of code. MDE has
been widely used for over a decade in many domains such
as automotive and telecommunication industries. Iterative-
incremental development and model-based analysis are central
to MDE in which artifacts typically undergo several iterations
and refinements during their lifetime that may require changes
to their initial design versions. As these models evolve, it
is necessary to assess their quality by repeating the analysis
and the verification of these models after every iteration or
refinement. This process, if not optimized, can be very tedious
and time consuming.

The IBM Rational Rhapsody framework [1] is one of the
MDE commercial tools that is heavily used in practice (e.g.,
in the automotive industry). Rhapsody Statecharts (also known
as Harel’s Statecharts [2]) are a visual state-based formalism
implemented in the IBM Rational Rhapsody framework to
describe the behavior of reactive systems. They extend Mealy
Machines - a type of Finite State Machines (FSMs) that
perform their action only on firing transitions - with state
entry and exit actions and hierarchical composite states with
orthogonal regions.

Symbolic execution is a well-known analysis technique
that systematically explores all possible execution paths of
behavioral software artifacts (e.g., programs [3] and state-
based models [4], [5]) using symbolic inputs such that we
can derive precise characterizations of the circumstances in
which a specific path is taken. The output of the analysis
is a symbolic execution tree (SET) which provides the ba-
sis for various types of analysis and verification, including
reachability analysis, guard analysis, invariant checking and
instant test case generation. One of the key challenges of
symbolic execution is scalability, especially when applied
to big, complex artifacts where the size of the output SET
becomes very large. Repeating the entire analysis even after
small changes is not the best solution.

This research introduces two complementary optimization
techniques that leverage the similarities between state machine
versions to reduce the cost of symbolic execution of the
evolved version.

The motivation is based on a number of facts. First,
symbolic execution has been shown to be a very powerful
method for the analysis of programs and there are already
several commercial code analysis tools built based on it (e.g.,
CodeSonar [6]). Similarly, the technique has been adopted and
applied in the context of state-based models (e.g., the IAR
visualSTATE - Verificator [7]). Second, there is an interest
from our industrial partner to improve the model-level analysis
capabilities of the IBM Rhapsody tool. Third, research on
optimizing the symbolic execution of evolving programs has
been recently addressed [8], [9], however to the best of
knowledge we are the first to consider such optimizations for
the symbolic execution of evolving state machines.

II. BACKGROUND AND RELATED WORK

Although the majority of existing analysis methods for
Statecharts-like models (e.g., UML state machines, UML-RT,
STATEMATE and Simulink Stateflow) make use of some
existing formal verification tools, mainly model checkers such
as SPIN [10], [11] or SMV [12], there are also approaches that
adopt the symbolic execution analysis technique of programs
and use it in the context of state-based models including:

• Modechart specifications (a variation of Harel Statecharts
that incorporates timing constraints in the models) for test
sequences generation [13];

• Labelled Transition Systems (LTSs) for test case genera-
tion [14] and test case selection [15];

• Input Output Symbolic Transition Systems (IOSTSs) [4]
for test purpose definition;

• STATEMATE statecharts [16] and UML State
Machines [17] for verifying temporal properties of
the subject models;

• Simulink/Stateflows [18] for analysis and test case gen-
eration of flight software using Java PathFinder and
Symbolic PathFinder;

• UML-RT State Machines [5] to support a variety of
analyses for this type of models.

In our work, we followed the approach of Zurowska and Din-
gel [5] with some variations to develop a symbolic execution



module for Rhapsody Statecharts. In contrast to their work
[5], our intermediate machine representation of Rhapsody
Statecharts takes the form of Mealy Machines instead of their
Functional Finite State Machines (FFSMs). Additionally, our
symbolic execution module is based on an off-the-shelf sym-
bolic execution engine, KLEE [19], to symbolically execute
action code encountered in the Statecharts, whereas they use
an in-house symbolic execution engine.

In his statement paper “Evolution, Adaptation, and the
Quest for Incrementality”, Ghezzi [20] argues that supporting
software evolution requires building incremental methods and
tools to speed up the maintenance process with the focus
on the analysis and the verification activities. An incremental
approach in such contexts would try to characterize exactly
what has been changed and reuse (as much as possible) the
results of previous processing steps in the steps that must be
rerun after the change. The motivation for this is twofold:
time efficiency and scalability. Given the iterative development
approach suggested by MDD, we believe that this vision needs
to be employed by modern analysis and verification methods.

Existing approaches to alleviate the scalability problem
and improve the efficiency of symbolic execution when re-
applying on an evolving version of a program are discussed
in [9] and [8]. In [9], Yang et al. present memoized symbolic
execution of source code - a technique that stores the results
of symbolic execution from a previous run and reuses them
as a starting point for the next run of the technique to
avoid the re-execution of common paths between the new
version of a program and its previous one, and to speed up
the symbolic execution for the new version. The same idea
has been applied earlier by Lauterburg et al. in [21] but in
the context of state-space exploration for evolving programs
using model checking. In [8], Person et al. introduce DiSE
(directed incremental symbolic execution) - a technique that
uses static analysis and change impact analysis to determine
the differences between program versions and the impact of
these differences on other locations in the program, and uses
this information to direct the symbolic execution to only
explore those impacted locations. A similar approach has been
proposed by Yang et al. in [22] for regression model checking.
In contrast to all the aforementioned approaches, which work
for optimizing the analysis of evolving programs, our work
tries to realize the same concept for evolving state machine
models.

III. APPROACH AND UNIQUENESS

Inspired by the research work for optimizing the symbolic
execution of evolving programs [8], [9], we propose two
different optimization techniques that leverage the similarities
between state machine versions to reduce the cost of symbolic
execution of the evolved version. The first technique, called
memoization-based symbolic execution (MSE), reuses the SET
generated from a previous analysis and incrementally updates
the relevant parts corresponding to the changes made to
the new version. The second technique integrates a change

impact analysis (i.e., dependency analysis) technique with the
symbolic execution to implement what we call dependency-
based symbolic execution (DSE)1. The dependence analysis
allows us to identify the unaffected parts of an evolved artifact;
complete exploration of these parts is not necessary, and
only a single representative path needs to be found during
exploration. Consequently, the resulting SET is not complete,
but it is sufficient to determine the impact of the change on
any SET-based analysis.

A well-known example of applications that can benefit from
such optimization techniques is regression testing which is a
crucial software evolution task that aims at ensuring that no
unintended behavior has been introduced to the system after
the change. A naive approach to regression testing usually
depends on re-running some existing test suite which has been
generated to validate the previous version of the system. This
process is expensive and time consuming and it is usually
supported with some optimization mechanisms including test
case selection and prioritization. Since symbolic execution can
be used to generate these test suites, optimizing the symbolic
execution of the new versions of an artifact can also be added
to these optimization mechanisms.

Figure 1 shows the main components of the architecture
implementing the standard symbolic execution (SE) of Rhap-
sody Statecharts and the two proposed optimization techniques
of an evolved Rhapsody Statechart: the memoization-based
symbolic execution (MSE) and the dependency-based sym-
bolic execution (DSE). The components of the architecture are
listed below with a brief description of the purpose of each
component. Full details can be found in a technical report [23].

SC2MLM - A transformation that transforms a Statechart
model into our MLM representation. The basic structure of
our MLM formalism consists of a set of global variables
(sometimes called attributes), a set of simple states with one
of them marked as an initial state, and a set of transitions
between these states. Simple states in MLMs do not have
entry/exit actions. Transitions are characterized in the same
way as in Rhapsody Statecharts by an event that triggers
them, an optional guard and an action that occurs upon firing
them. More advanced features that are found in Rhapsody
Statecharts such as composite states, concurrent states, states
with entry/exit actions, condition connectors and junction
connectors need to be mapped to fit the structure of the MLMs
formalism. Our current transformation supports the mapping
of these specific features.

MLM2SET - Our standard symbolic execution module that
traverses an MLM model and symbolically executes the action
code encountered in each transition to build the model’s
symbolic state space. We developed an interface to the KLEE
symbolic execution engine [19] to symbolically execute the
action code of each transition. The result from this interface
is a set of variable assignments and path constraints that
represent different feasible paths in the action code.

1We could also call it regression or partial symbolic execution.



Fig. 1: The architecture of our standard symbolic execution of Rhapsody Statecharts and its optimizations (SE, MSE and DSE).

SC2MLM DiffMap - A mapping of the differences be-
tween two Rhapsody Statecharts obtained from the Rhapsody
DiffMerge tool into their MLM correspondences. Currently,
we consider only the following types of model changes:
adding/removing states; adding/removing transitions; updating
the actions of states; and updating transitions. All these
types of changes can be represented as changes to transitions
in our MLM representation. For example, adding/removing
states can be represented by an addition/deletion of transitions
connecting these states with other states in the model; also
updating the entry/exit actions of states can be represented by
an update of their incoming/outgoing transitions, respectively.
Therefore, the output from this component is a set of updated
transitions in the modified version of the model Tupdated

including all transitions that have been added to, deleted from
or updated in the modified version of the model.

MLM2MSET - The main component of our MSE technique.
The three inputs to this component are: 1) the MLM represen-
tation of the modified version of the model MLMmodV er, 2)
the set of transitions that have been updated in the modified
version of the model Tupdated, and 3) the SET to be reused
(i.e., SET baseV er). Two successive tasks are performed by
this component. The first task is to load and explore the input
SET baseV er in order to remove all the edges representing any
transition belonging to the set of updated transitions Tupdated

(note that removing an edge leads to removing the entire
subtree rooted at the target node of the edge). The second
task is to re-explore the SET resulting from the previous task
to find all symbolic states representing states with outgoing

transitions belonging to Tupdated. For each of these symbolic
states, we symbolically execute MLMmodV er based on some
parameters. These parameters determine where the exploration
starts (i.e., the symbolic state to begin the exploration at),
which updated transitions to consider when exploring the state
representing the start symbolic state for the first time, and the
set of symbolic states that have been previously explored so far
to be used for the subsumption checking. The resulting SETs
are then merged with the SET resulting from the previous
task. The output from the component is a memoization-
based SET (MSET) of the modified version of the model
MSETmodV er that shares all what can be reused from the old
tree SET baseV er but also contains the modifications resulting
from the SE of the parts of the new version of the model that
are found changed.

Dependency Analysis - A component for computing the
set of transitions that have an impact or are impacted by
any of the updated transitions found in Tupdated. The two
inputs to this component are: 1) the MLM representation of
the modified version of the model MLMmodV er and 2) the
set of transitions that are found to have been updated in the
modified version of the model Tupdated. In this component,
we first explore the input MLM model to compute all the
dependences that exist between its transitions, then identify
the transitions that have a dependency with any of the input
updated transitions. The output is the union of the input
updated transitions set and their dependences. We developed
the algorithms implementing the definitions presented in [24],
[25] for computing the dependencies in conventional Extended



Finite State Machines (EFSMs), which can also be applied to
our MLMs.

MLM2DSET - The main component of our DSE technique.
The two inputs to this component are: 1) the MLM represen-
tation of the modified version of the model MLMmodV er

and 2) the set of transitions that are found to have been
updated or impacted in the modified version of the model
Tupdated + T impacted. The main task performed by this
component is similar to the standard SE technique except that
the state-space exploration of the input model MLMmodV er

is guided by the input set of updated and impacted transitions
Tupdated + T impacted. Two modes of exploration are defined:
full and partial. A full exploration mode requires a complete
exploration of all execution paths of an explored transition
and is applied for all transitions that are found to have been
updated or impacted. However, a partial exploration mode
requires the execution of only one representative path of an
explored transition and is applied to transitions that are found
neither updated nor impacted. The output from the component
is a dependency-based SET (DSET) of the modified version of
the model DSETmodV er that can be smaller/equal in size to
the standard SET of the same model, depending on the amount
of savings gained from the partial exploration of the input list
of updated/impacted transitions.

IV. RESULTS AND CONTRIBUTIONS

The architecture presented in Figure 1 is implemented using
three Eclipse plug-ins, summarized as follows.

• The first plug-in implements the SC2MLM and the
“Dependency Analysis” components and it has been
developed in the context of the IBM Rhapsody Rule-
sComposer Eclipse framework.

• The second plug-in implements the CS2MLM DiffMap
component.

• The third plug-in realizes the three symbolic
execution components: MLM2SET, MLM2MSET
and MLM2DSET.

To measure how effective are our optimizations compared
to standard SE of a changed state machine model (i.e., how
much they reduce the resource requirements of the symbolic
execution of a changed state machine model) and to investigate
what aspects influence the effectiveness of each technique, we
ran our evaluation on three industrial-sized models from the
automotive domain.

The first model, the Air Quality System (AQS), is a
proprietary model that we obtained from our industrial partner
that is responsible for air purification in the vehicle’s cabin.
The second and the third models, the Lane Guide System
(LGS) and the Adaptive Cruise Control System (ACCS),
are non-proprietary models designed at the University of
Waterloo [26]. The LGS is an automotive feature used to assist
drivers in avoiding unintentional lane departure by providing
alerts when certain events occur. The ACCS is an automotive
feature used to automatically maintain the speed of a vehicle

set by the driver through the automatic operation of the
vehicle. The three models are nested up to the third level.
Additionally, the third one has two orthogonal regions.

The performance of the standard symbolic execution of the
base versions of the three models took from 11 to 14 min and
the numbers of the symbolic states and the symbolic execution
paths of the resulting symbolic execution trees ranged from
approximately 2000 to 6000 symbolic states and from 1000
to 5000 symbolic execution paths.

To measure the effectiveness and the performance of the
proposed optimization techniques compared with the standard
one, we first prepared a set of 67 different modified versions
for the three models. Second, we ran standard SE, MSE and
DSE on each modified version and recorded the time taken to
run each technique and the size of their generated symbolic
execution trees. Third, we compared the results of standard
SE with the results of MSE and DSE.

A. Results

Figures 2a and 2b show a line graph of the average and
the standard deviation values of the amount of savings in
execution times and in the numbers of symbolic states and
execution paths gained from applying MSE (resp. DSE) on
all the modified versions of the three given models.

Interestingly, in some modified versions, both MSE and
DSE achieved savings up to 99%. However, on average, and
based on the values presented in Figure 2a, we can see that,
on average, MSE achieved an average savings ranged from
48% to 76%, while DSE achieved an average savings ranged
from 5.5% to 96%.

As the gaps between the average savings gained for the
three models are more significant for the DSE than they are
for MSE, we believe that DSE is more sensitive to the subject
models.

We also notice from that the standard deviation values of
the achieved savings, shown in Figure 2b, are higher for MSE
than they are for DSE, which means that the effectiveness of
MSE is more influenced by the changes made in each modified
version that it is for DSE.

As the results from our experiments on individual evolving
state machines look promising and show a significant amount
of savings from both optimization techniques, we are currently
working on extending our techniques to handle a system of
asynchronously communicating state machines.

B. Contributions

The proposed research aims to improve the current state-
of-the-art in the area of model-based analysis in an evolu-
tionary software development environment. Our contributions
specifically include (1) the development, formalization and
proof-of-concept implementation of the proposed optimization
techniques mentioned in Section III, (2) an evaluation that
will provide the results showing the benefits of our research
methodology and (3) an actual example of research that can
enrich the analysis capabilities of existing MDE tools.



(a) Average of Savings

(b) Standard Deviation of Savings

Fig. 2: Statistical Measures of the Effectiveness of MSE and
DSE for the Three Models
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